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ABSTRACT

A family of subtraction-based anomalous change detection algorithms is derived from a total least squares
(TLSQ) framework. This provides an alternative to the well-known chronochrome algorithm, which is derived
from ordinary least squares. In both cases, the most anomalous changes are identified with the pixels that exhibit
the largest residuals with respect to the regression of the two images against each other. The family of TLSQ-
based anomalous change detectors is shown to be equivalent to the subspace RX formulation for straight anomaly
detection, but applied to the stacked space. However, this family is not invariant to linear coordinate transforms.
On the other hand, whitened TLSQ is coordinate invariant, and special cases of it are equivalent to canonical
correlation analysis and optimized covariance equalization. What whitened TLSQ offers is a generalization of
these algorithms with the potential for better performance.
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1. SAMUEL BECKETT’S INTRODUCTION

Scene one. Images two. Call them x and y. Taken at different times. On different days. Possibly even
with different cameras. Different scene illumination, sensor calibration, atmospheric conditions. Imperfectly
registered. Everything is different. But there is something else. Something has changed. Something interesting,
rare, unusual. Hidden in plain sight. Anomalous change among the pervasive differences.

2. TECHNICAL INTRODUCTION

The main challenge for the anomalous change detection (ACD) problem is to distinguish the anomalous changes
(which are rare) from the pervasive differences (which occur throughout the scene). Since virtually all of the data
corresponds to pervasive differences, a model that is fit to the data will be a model of pervasive differences. The
pixels that deviate from this model are then flagged as candidates for anomalous changes. ACD based on a linear
fit to the data was introduced by Schaum and Stocker1, 2 and alliteratively denominated the “chronochrome”.
An extension to nonlinear fits using neural networks was described by Clifton.3 Further variations include
covariance equalization,4, 5 and multivariate alteration detection,6 which is based on canonical components
analysis.7 The notion of distinguishing pervasive differences from anomalous changes led to a more formal
machine learning framework8, 9 which recast the problem as one of binary classification. A recent survey of the
practical issues that arise in the ACD problem is given by Eismann et al.10

The presentation here in terms of total least squares11, 12 extends (and symmetrizes) the chronochrome, but
also connects to covariance equalization and multivariate alteration detection. All of these belong to the family
of quadratic covariance-based ACD algorithms.13

Let x ∈ Rdx be the spectrum of a pixel in the x-image, and y ∈ Rdy the spectrum of the corresponding pixel
in the y-image. We will assume, without loss of generality, that means have been subtracted from x and y.
Thus, 〈x〉 = 0 and 〈y〉 = 0, where the angle brackets indicate an average over pixels (e.g., over all the pixels in
an image). And we will write the following covariance and cross-covariances:

X =
〈
xxT

〉
, (1)

Y =
〈
yyT

〉
, (2)

C =
〈
yxT

〉
, (3)
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1. Identify two matrices, Bx and By, with k columns and dx and dy rows, respectively;
how these matrices are chosen varies from method to method, but most employ infor-
mation about the variance and covariances of the data.

2. At each pixel pair (x,y), compute transformed pixel values: x′ = BT
x x and y′ = BT

y y.
Note that both x′ and y′ are k-dimensional.

3. Subtract the transformed pixels: e = y′ − x′

4. Compute the k × k covariance matrix of the difference vectors:
〈
eeT

〉
.

5. Associate the “anomalousness” of a vector-valued pixel-pair difference e with its Ma-
halanobis distance to the origin: A(e) = eT

〈
eeT

〉−1
e.

Figure 1. Framework for subtraction-based change detection

where the superscript T indicates transpose. It is useful to write

z =
[

x
y

]
∈ Rd, (4)

with d = dx + dy, as the pixel in the “stacked” image. Again, we take 〈z〉 = 0, and we can write the stacked
covariance matrix∗

Z =
〈
zzT

〉
=

[
X CT

C Y

]
. (5)

It is also useful to define the data matrix

Dx = [x1 x2 · · · xn] , (6)

where xi corresponds to the ith pixel in the image, and n is the total number of pixels in the dataset. We can
similarly define Dy and Dz, and this allows an alternative set of expressions for covariances and cross-covariances:

X = (1/n)DxDT
x , (7)

Y = (1/n)DyDT
y , (8)

C = (1/n)DyDT
x , (9)

Z = (1/n)DzD
T
z . (10)

3. SUBTRACTION-BASED CHANGE DETECTION

The simplest way to detect differences between two images is to subtract them. Where the images are identical,
the difference will be zero. Larger differences are naturally interpreted as more important changes. For a variety
of reasons, this direct approach doesn’t always work very well. When dx 6= dy, it’s not even possible. Nonetheless,
most change detections algorithms are based on this subtraction principle. In fact, a number of them (including
chronochrome, covariance equalization, multivariate alteration detection, and as we will show, total least squares)
employ the framework shown in Fig. 1. In this framework, x and y are first transformed, and the transformed
values are subtracted. The vector valued difference e = y′−x′ is converted to a scalar by computing Mahalanobis
distance to the origin. This framework allows us to express the anomalousness of a pixel pair (x,y) as an explicit
function of Bx, By, and the covariances X, Y , and C. In particular,

A(x,y) = (BT
y y −BT

x x)T (BT
y Y By −BT

y CBx −BT
x CT By + BT

x XBx)−1(BT
y y −BT

x x). (11)

∗We will henceforth assume that the covariance matrices X, Y , and Z are of full rank and have well-defined inverses. If
that were not the case, it would mean that we had some strictly redundant bands (i.e., bands that were linear combinations
of other bands), which we could then just get rid of, and achieve our assumed full-rank state.
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This expression is quadratic in x and y, and can be expressed in terms of a d× d matrix Q, so that

A(x,y) =
[

xT yT
]

Q

[
x
y

]
= zT Qz, (12)

where z is the stacked pixel defined in Eq. (4), and Q is a positive semi-definite matrix:

Q =
[
−Bx

By

] [
BT

y Y By −BT
y CBx −BT

x CT By + BT
x XBx

]−1 [
−BT

x BT
y

]
. (13)

If we write

B =
[
−Bx

By

]
, (14)

then the residuals e = y′ − x′ = BT
y y −BT

x x can be simply written e = BT z. And

Q = B

(
BT

[
X CT

C Y

]
B

)−1

BT = B(BT ZB)−1BT . (15)

Since B is a d× k matrix, BT ZB is k × k, which means that Q is at most rank k. If B is of lower rank than k,
that will lead to the matrix BT ZB having less than full rank, and therefore not being strictly invertible. The
operational solution is to take the pseudoinverse.14, 15 Specifically, if k′ ≤ k is the rank of B, then we can write
B = BoR

T where Bo is a d × k′ matrix of rank k′ and R is a k × k′ matrix satisfying RT R = I. In place of
(BT ZB)−1, we use R(BT

o ZBo)−1RT . This leads to an expression for the matrix

Q = B pseudoinverse(BT ZB) BT = BoR
T R(BT

o ZBo)−1RT RBo = Bo(BT
o ZBo)−1BT

o . (16)

As Eq. (15) indicates, the subtraction-based ACD algorithm is defined by the matrix B. But invertible linear
transforms of B give equivalent detectors. If G is an invertible k × k matrix, then the transform B → BGT

leaves Q invariant. That is,

QG = BGT
(
(BGT )T Z(BGT )

)−1
(BGT )T = BGT (GBT ZBGT )−1GBT = BGT G−T (BT ZB)−1G−1GBT

= B(BT ZB)−1BT = Q. (17)

Finally, we mention the special case when k = d and B is of full rank. From the argument in Eq. (17), we
can take B = I without loss of generality, which gives Q = Z−1. This is the ordinary RX anomaly detector16 in
the stacked space.

4. ORDINARY LEAST SQUARES REGRESSION

For the chronochrome algorithm,1, 2 the task is to find a matrix L ∈ Rdy×dx for which ŷ = Lx approximates y
in the least squares sense. That is,

L = argminL

〈
||y − ŷ||2F

〉
such that ŷ = Lx (18)

where the || · ||F symbol indicates the Frobenius norm (square root of the sum of the squares of the elements
of the matrix). Equivalently, we can say D̂y = LDx approximates Dy in the least squares (or Frobenius) sense;
that is,

L = argminL ||Dy − LDx||F . (19)

We note that

||Dy − LDx||2F = trace
(
[Dy − LDx][Dy − LDx]T

)
(20)

= trace
(
[DyDT

y − LDxDT
y −DyDT

x LT + LDxDT
x LT

)
(21)

= n trace
(
Y − LCT − CLT + LXLT

)
(22)
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is quadratic in L and in particular can be expressed in terms of the completed square:

Y − LCT − CLT + LXLT = Y − CX−1CT + [LX1/2 − CX−1/2][LX1/2 − CX−1/2]T . (23)

Therefore

(1/n)||Dy − LDx||2F = trace
(
Y − CX−1CT

)
+ trace

(
[LX1/2 − CX−1/2][LX1/2 − CX−1/2]T

)
(24)

= trace
(
Y − CX−1CT

)
+ ||LX1/2 − CX−1/2||2F . (25)

It is clear that this achieves its minimum when LX1/2 − CX−1/2 = 0, or equivalently, when L = CX−1.

Following the framework in Fig. 1, we consider the residuals from the regressed values. Thus,

e = y − ŷ = y − CX−1x (26)

with larger residuals corresponding to more anomalous changes. To convert the vector-valued e to a scalar
anomalousness, we use the Mahalanobis distance:

ACC(x,y) = eT
〈
eeT

〉−1
e = (y − CX−1x)T

[
Y − CX−1CT

]−1
(y − CX−1x). (27)

This is a quadratic detector, ACC(x,y) = zT QCCz, where z is defined in Eq. (4), and QCC is given by

QCC =
[
−X−1CT

I

] [
Y − CX−1C

]−1 [
−CX−1 I

]
(28)

=
[

X CT

C Y

]−1

−
[

X−1 0
0 0

]
. (29)

where the equivalence of Eq. (28) and Eq. (29) was shown in Ref. [13].

4.1. Asymmetry of the chronochrome

The chronochrome is inherently asymmetric with respect to x and y. Eq. (27) was derived by regressing y against
x, but a second chronochrome can be obtained by regressing x against y. Here, we write x̂ = L′y and choose L′

to minimize 〈||x− x̂||F 〉, or equivalently

L′ = argminL ||Dx − LDy||F , (30)

for which the solution is L′ = CT Y −1. The anomaly detector is given by

ACC’(x,y) = (x− CT Y −1y)T
[
X − CT Y −1C

]−1
(x− CT Y −1y). (31)

and in general, the expressions for anomalousness in Eq. (27) and Eq. (31) are not equivalent. In fact, Eq. (31)
corresponds to Eq. (12) with

QCC’ =
[

X CT

C Y

]−1

−
[

0 0
0 Y −1

]
. (32)

4.2. Scale invariance of the chronochrome

The anomalies found by (both variants of) chronochrome are invariant to scaling of the data. Specifically,
consider linearly scaled datasets D′

x = GxDx and D′
y = GyDy, where Gx and Gy are nonsingular matrices.

For these transformed data, following Eqs. (7-10), we have X ′ = GxXGT
x , Y ′ = GyY GT

y , and C ′ = GyCGT
x .

Further, consider quadratic coefficient matrices of the form

Q =
[

X CT

C Y

]−1

−
[

βxX−1 0
0 βyY −1

]
, (33)
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where appropriate choices of the scalar parameters βx and βy correspond to Eq. (29) or Eq. (32). Then, in the
transformed coordinates, we have

Q′ =
[

X ′ C ′T

C ′ Y ′

]−1

−
[

βxX ′−1 0
0 βyY ′−1

]
=

[
GxXGT

x GyCGx
T

GyCGx GyY GT
y

]−1

−
[

βx(GxXGT
x )−1 0

0 βy(GyY GT
y )−1

]
= G−T QG−1 (34)

where

G =
[

Gx 0
0 Gy

]
. (35)

Thus, the anomalousness in transformed coordinates is the same as the anomalousness in original coordinates:

A′(x′,y′) = z′T Q′z′ = zT GT
[
G−T QG−1

]
Gz = zQz = A(x,y). (36)

5. TOTAL LEAST SQUARES

The concept of total least squares was popularized by an important paper of Golub and Van Loan.11 For total
least squares, we allow errors in both x and y. We write ŷ = Lx̂ and choose ŷ and x̂ to minimize the total error:

L = argminL

〈
||y − ŷ||2F + ||x− x̂||2F

〉
.

such that ŷ = Lx̂. (37)

Note that, in terms of the stacked variable z, we have ||y− ŷ||2F + ||x− x̂||2F = ||z− ẑ||2F , and that ŷ = Lx̂ is
equivalent to Kẑ = 0 where K = [−L | I]; that is: the first dx columns of K correspond to the columns of the
matrix −L and the last dy columns are the identity matrix. This suggests a generalization of Eq. (37):

K = argminK

〈
||z− ẑ||2F

〉
such that Kẑ = 0, and (38)
rank(K) ≥ k.

The condition on the rank of K is important; among other things, it rules out the trivial minimum given by
K = 0 and ẑ = z. Here, K plays the role of the matrix [−L | I] in the formulation in Eq. (37), but as expressed
in Eq. (38), it is not uniquely defined. For instance, if K solves Eq. (38), then for any nonsingular matrix G
with as many columns as K has rows, GK also solves Eq. (38).

The case where rank(K) = dy is instructive. If K is a rank dy matrix, then the nullspace condition Kẑ = 0
can equivalently be expressed with a matrix K ′ of size dy × d. (Since K is of rank dy, it must have dy linearly
independent rows: construct K ′ by selecting these dy rows from K.) Write this matrix K ′ = [Ka | Kb] where Ka

is a dy×(d−dy) matrix and Kb is dy×dy. As long as Kb is invertible, then Kẑ = 0 is equivalent to K−1
b K ′ẑ = 0.

But note that K−1
b K ′ =

[
K−1

b Ka | I
]
. If we now write L = −K−1

b Ka, then we have [−L | I] ẑ = 0, or equivalently
ŷ = Lx̂. In other words, solving the more general problem in Eq. (38) with the constraint that rank(K) = dy is
equivalent to solving the problem in Eq. (37).

In a more modern interpretation of total least squares,12 the problem is to find a lower-rank approximation
of the data matrix. Applied to our d = dx + dy dimensional stacked vector data Dz, we write

D(m)
z = argminD||Dz −D||F such that rank(D) ≤ m (39)

We can explicitly write the solution to this optimization in terms of a singular value decomposition. Let Dz =
UΣV T be the singular value decomposition of the data matrix. Here U and V are orthogonal matrices (satisfying
UT U = I and V T V = I), and Σ is a diagonal matrix of non-negative singular values. This enables us to write
D

(m)
z = UΣmV T where Σm is the best rank-m approximation to Σ; in particular, Σm is Σ with the d − m

smallest elements set to zero (thus, the largest m elements are retained).
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Note that we do not have to perform a singular value decomposition on the entire dataset Dz, but can instead
obtain U and Σ directly from the covariance matrix Z (or, equivalently, from X, Y and C). In particular,
Z = (1/n)DzD

T
z = (1/n)UΣ2UT . So U is the matrix of eigenvectors of Z, and (1/n)Σ2 is a diagonal matrix of

eigenvalues.

We remark that ∆m = ΣmΣ−1 = Σ−1Σm is a diagonal matrix with only ones and zeros on the diagonal (in
fact, it has m ones, and d−m zeros), and that it is therefore idempotent: that is, ∆2

m = ∆m. In terms of U and
∆m, we can write the projection operator Pm = U∆mUT , and observe that D

(m)
z = PmDz or, on a pixel-by-pixel

basis, ẑ = Pmz. Note that Pm is also idempotent and that the rank of Pm is m. Note further that (I −Pm) is a
projection; it is orthogonal to Pm since (I − Pm)Pm = Pm − P 2

m = Pm − Pm = 0, and its rank is d−m.

This enables us to solve Eq. (38). Let K = (I − Pm) and observe that

Kẑ = (I − Pm)ẑ = (I − Pm)Pmẑ = 0. (40)

The rank of K is d − m, so we can take m = d − k to ensure that the rank of K is at least k and that both
conditions in Eq. (38) are therefore satisfied. Finally, as explained above, the case k = dy can be used to solve
Eq. (37).

5.1. Total least squares for anomalous change detection
Consider the residuals of this approximation, e = z− ẑ. Since ẑ = Pd−kz, we can write e = (I−Pd−k)z. Observe
that I − Pd−k = I − U∆d−kUT = U(I −∆d−k)UT , and note that I −∆d−k is a diagonal matrix with ones and
zeros on the diagonal; in fact it has ones where ∆d−k has zeros and vice versa. Since ∆d−k has ones corresponding
to the d − k largest eigenvalues of Z, it follows that I − ∆d−k will have ones corresponding to the k smallest
eigenvalues of Z. Let Bk be the k nonzero columns of U(I −∆d−k); these correspond to the k eigenvectors of Z
with the smallest eigenvalues. Further, we can write (I−Pd−k) = U(I−∆d−k)UT = U(I−∆d−k)2UT = BkBT

k ,
and so 〈

eeT
〉

=
〈
(I − Pd−k)zzT (I − PT

d−k)
〉

= BkBT
k ZBkBT

k (41)

the pseudoinverse of which is given by Bk(BT
k ZBk)−1BT

k . It follows that the anomalies are given by

ATLSQ(z) = eT
〈
eeT

〉−1
e = zT BkBT

k Bk(BT
k ZBk)−1BT

k BkBT
k z = zT Bk(BT

k ZBk)−1BT
k z = zT QTLSQz (42)

with
QTLSQ = Bk(BT

k ZBk)−1BT
k , (43)

where, again, the columns of Bk are the k eigenvectors of Z with the smallest eigenvalues. We remark that this
Q is the best rank-k approximation to Z−1; that is,

QTLSQ = argminQ||Z−1 −Q||F such that rank(Q) ≤ k (44)

We also remark that the TLSQ detector is the same as the subspace RX (SSRX) anomaly detector,17 but it
is used here to detect anomalous changes by looking for anomalies in the stacked space.

5.2. Lack of scale invariance for total least squares
The argument in Section 4.2 does not directly apply for TLSQ because Q cannot be expressed in a form given by
Eq. (33). Nonetheless following the argument in Section 4.2, we write Z ′ = GZGT and let B′

k be the k eigenvectors
of Z ′. In these coordinates, the coefficient matrix would look like Eq. (43): Q′ = B′

k(B′T
k Z ′B′

k)−1B′T
k . But

expressed in the original coordinates, we get

QG−TLSQ = GT Q′G = GT B′
k(B′T

k GZGT B′
k)−1B′T

k G. (45)

Comparing this with Eq. (43), we have equality if GT B′
k = Bk, but that’s not generally the case. GT B′

k is the
transformed eigenvectors of the transformed covariance Z ′, while Bk is the original eigenvectors of the original
covariance Z.

This lack of scale invariance in TLSQ (which is also lacking in SSRX) leads us to specify a standardized
scaling of the data.
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5.3. Whitened total least squares

A natural way to deal with the lack of scale invariance is to individually whiten the x and y images before TLSQ
is applied. In these coordinates, we write

x̃ = X−1/2x (46)
ỹ = Y −1/2y (47)

z̃ =
[

x̃
ỹ

]
=

[
X−1/2 0

0 Y −1/2

]
z. (48)

Note that the x-image and y-image are not collectively whitened; so z̃ is not given by Z−1/2z. The covariances
in the whitened coordinates are simplified:

X̃ =
〈
x̃x̃T

〉
= I (49)

Ỹ =
〈
ỹỹT

〉
= I (50)

C̃ =
〈
ỹx̃T

〉
= Y −1/2CX−1/2 (51)

Z̃ =
〈
z̃z̃T

〉
=

[
I C̃T

C̃ I

]
= I +

[
0 C̃T

C̃ 0

]
. (52)

Using z̃ defined in Eq. (48) and Z̃ defined in Eq. (52), we follow the derivation for TLSQ above, but in
whitened coordinates, to produce an anomaly detector

AWTLSQ(z̃) = z̃T Q̃WTLSQz̃ (53)

with
Q̃WTLSQ = B̃k(B̃T

k Z̃B̃k)−1B̃T
k (54)

where B̃k corresponds to the k smallest eigenvectors of Z̃.

We can express this detector in the original (unwhitened) coordinates, using QWTLSQ = GT
wQ̃WTLSQGw,

where

Gw =
[

X−1/2 0
0 Y −1/2

]
(55)

is the whitening transform. Recognizing that Z̃ = GwZGT
w, and writing B̆k = GT

wB̃k, then we obtain

QWTLSQ = GT
wB̃k(B̃T

k GwZGT
wB̃k)−1B̃T

k Gw = B̆k(B̆T
k ZB̆k)−1B̆T

k (56)

which evokes Eq. (43), but is not the same because B̆k is not the same as the Bk that appears in Eq. (43). The
whitened eigenvectors of the whitened covariance Z̃ is not the same as the original eigenvectors of the original
covariance Z.

In the following sections, we will show that (for some values of k), the whitened total least squares anomalous
change detector is equivalent to the use of canonical correlation analysis in the multivariate alteration detection
(MAD) algorithm6 and to the optimized covariance equalization algorithm.4, 5

5.4. Comparison to Canonical Correlation Analysis

Nielsen et al.6 introduced an ACD algorithm called multivariate alteration detection (MAD), based on canonical
correlation analysis (CCA). The aim of CCA is to find linear combinations of data that are maximally correlated
to each other.7 This is most easily understood for the first canonical correlation component. We want to choose
vectors bx ∈ Rdx and by ∈ Rdy so that the scalar values x = bT

x x and y = bT
y y are highly correlated. Specifically

we want to maximize:

ρ =
〈xy〉√
〈x2〉 〈y2〉

=
bT

x CT by√
(bT

x Xbx)(bT
y Y by)

. (57)
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Because the magnitudes of bx and by don’t affect this correlation, we can impose constraints

1 =
〈
x2

〉
=

〈
(bT

x x)2
〉

= bT
x

〈
xxT

〉
bx = bT

x Xbx (58)

1 =
〈
y2

〉
=

〈
(bT

y y)2
〉

= bT
y

〈
yyT

〉
by = bT

y Y by (59)

on the magnitudes of bT
x x and bT

y y. With these in place, we want to maximize the correlation, which is given
by the product

〈
(bT

x x)(bT
y y)

〉
= bT

x

〈
xyT

〉
by = bT

x CT by. Subject to these constraints, we can write

ρ = bT
x CT by − µ(bT

x Xbx − 1)− ν(bT
y Y by − 1) (60)

where µ and ν are Lagrange multipliers. Differentiating with respect to bx and by, and setting to zero, we
obtain:

0 =
∂ρ

∂bx
= CT by − 2µXbx, (61)

0 =
∂ρ

∂by
= Cbx − 2νY by. (62)

Multiplying Eq. (61) by bT
x and Eq. (62) by bT

y :

0 = bT
x CT by − 2µbT

x Xbx = bT
x CT by − 2µ, (63)

0 = bT
y Cbx − 2νbT

y Y by = bT
y Cbx − 2ν. (64)

which gives µ = ν = (1/2)bT
x CT by. Let λ = bT

x CT by = 2µ = 2ν and rewrite Eq. (61) and Eq. (62) as[
0 CT

C 0

] [
bx

by

]
− λ

[
X 0
0 Y

] [
bx

by

]
= 0. (65)

If we write b̃x = X1/2bx and b̃y = Y 1/2by, then this simplifies to[
0 C̃T

C̃ 0

] [
b̃x

b̃y

]
= λ

[
b̃x

b̃y

]
. (66)

where C̃ = Y −1/2CX−1/2. This expression can be rewritten[
I C̃T

C̃ I

] [
b̃x

b̃y

]
= (1 + λ)

[
b̃x

b̃y

]
. (67)

and we see that the whitened form of the first canonical component (b̃x, b̃y) is an eigenvector of the whitened
covariance matrix Z̃ defined in Eq. (52). The first canonical component is given by the eigenvector with largest
eigenvalue; subsequent canonical components are given by eigenvectors with decreasing eigenvalues.

Because of the symmetry in Z̃, there is a natural pairing of eigenvectors. With b̃x and b̃y chosen to satisfy
Eq. (67), we can see [

I C̃T

C̃ I

] [
−b̃x

b̃y

]
= (1− λ)

[
−b̃x

b̃y

]
. (68)

Write Bkx as the matrix whose k columns are the first k canonical components, and similarly for Bky. Then
the matrix

Bk =
[
−Bkx

Bky

]
, (69)

will correspond to the k eigenvectors of Z̃ with the smallest eigenvalues.

Then using x′ = BT
kxx̃ and y′ = BT

kyỹ as new coordinates, we can look for anomalous changes by just
subtracting them

e = y′ − x′ = BT
kyỹ −BT

kxx̃ = Bkz (70)
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and expressing anomalousness as the Mahalanobis distance A(e) = eT
〈
eeT

〉−1
e, which gives ACCA(z̃) =

z̃T QCCAz̃ where
Q̃CCA = Bk(BT

k Z̃Bk)−1BT
k . (71)

with Bk corresponding to the k smallest eigenvectors of Z̃. Comparing QCCA to QWTLSQ in Eq. (54) shows that
the CCA-based anomaly detector is identical to the whitened TLSQ detector.

In recommending canonical correlation analysis for the multivariate alteration detection (MAD) algorithm,6

the role of k was not highlighted. Since typically, dx = dy, it is implicitly recommended that k = dx = dy. But
the formalism permits values of k ranging from k = 1 to k = d = dx+dy, with the latter case corresponding to the
RX algorithm applied to the stacked vector z. When k < min(dx, dy), then CCA can be treated as a dimension
reduction algorithm, reducing both the x-image and y-image to dimension k. These dimension-reduced images
can then be used as input images for other ACD algorithms, quadratic13 or otherwise.18

5.5. Comparison to Optimized Covariance Equalization

The idea of covariance equalization is, as the name suggests, to transform the x-image and y-image so that
they share the same covariance. Then the images are subtracted and anomalousness is computed in terms of
Mahalanobis distance of the vector-valued difference.

If x′ = BT
x x, then

〈
x′x′T

〉
= BT

x

〈
xxT

〉
Bx = BT

x XBx is the covariance of the transformed x-image.

Similarly, BT
y Y By is the covariance of the transformed y-image. In the covariance equalization scheme, then, we

choose Bx and By so that
BT

x XBx = BT
y Y By. (72)

For “standard” covariance equalization, we take Bx = X−1/2 and By = Y −1/2. In this case, x′ and y′ are
both white (their covariance matrices are the identity matrix). An alternative is to take Bx = X−1/2Y 1/2 and
By = I, so x′ and y′ will both have the same covariance as the original y-image. Since this corresponds to a

linear invertible transform to the matrix B =
[
−Bx

By

]
, we have from Eq. (17) that the result will be the same.

We further remark that standard covariance equalization requires that dx = dy.

A more general solution to Eq. (72) is given by Bx = X−1/2R and By = Y −1/2S where R and S satisfy
RT R = I and ST S = I. It is not necessary that R or S be square, so the case dx 6= dy can be accommodated.
Specifically, we can say that R is a dx × k matrix and S is dy × k.

The “optimal” covariance equalization chooses R and S to minimize average squared difference of the trans-
formed variables,

〈
||BT

y y −BT
x x||2F

〉
. In particular, we note〈

||BT
y y −BT

x x||2F
〉

= trace
(
BT

y Y By −BT
x CT By −BT

y CBx + BT
x XBx

)
(73)

= trace
(
I −RT C̃T S − ST C̃R + I

)
(74)

so that the choice of R and S should maximize trace
(
ST C̃R

)
.

Let C̃ = UJV T be its singular value decomposition. Recall that C̃ is a matrix of size dy × dx, and so it has
at most m = min(dx, dy) nonzero singular values. Thus, we can write the decomposition with U and V both
having m columns, and J being a diagonal m×m matrix.

In the case for which covariance equalization was originally proposed, k = m = dx = dy, and trace
(
ST C̃R

)
=

trace
(
ST UJV T R

)
= trace

(
V T RST UJ

)
≤ trace(J) with equality obtained when V T RST U = I, or SRT =

UV T = (C̃C̃T )−1/2C̃. The particular choice RT = UV T and S = I was proposed by Schaum and Stocker.5

If we more generally assume k ≤ m, then ST C̃R will be a k × k matrix, and trace
(
ST UJV T R

)
≤

∑k
n=1 jn

where jn is the nth singular value. We can achieve this bound with SRT = UkV T
k where Uk corresponds to

the first k columns of U and Vk is the first k columns of V . The choice S = Uk and R = Vk is a particularly
convenient formulation and leads to “diagonalized” covariance equalization.13
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This leads to the transform

Bk =
[
−R

S

]
=

[
−Vk

Uk

]
(75)

which is a d× k matrix, the nth column of which is given by

bn =
[
−vn

un

]
(76)

where vn (resp. un) is the nth column of V (resp. U).

In general we note that

Z̃

[
±vn

un

]
=

[
I C̃T

C̃ I

] [
±vn

un

]
=

[
I V JUT

UJV T I

] [
±vn

un

]
=

[
±vn + V JUT un

un ± UJV T vn

]
=

[
±vn + jnvn

un ± jnun

]
= (1± jn)

[
±vn

un

]
(77)

In terms of the m = min(dx, dy) singular values jn of C̃, we can say that the m largest eigenvalues of Z̃ are of
the form 1 + jn, that the m smallest are of the form 1− jn, and the rest are equal to 1. And the smallest ones
are associated with eigenvectors of the form in Eq. (76). It follows that the the coefficient matrix for optimized
covariance equalization is given by

Q̃CE-R = Bk(BT
k Z̃Bk)−1BT

k (78)

where the columns of Bk are the k smallest eigenvectors of Z̃, and therefore the detector defined by Eq. (78)
is identical to the WTLSQ detector in Eq. (54) and the CCA detector in Eq. (71). We remark that this
formulation requires k ≤ m = min(dx, dy), but that the more general whitened TLSQ formulation permits the
range 1 ≤ k ≤ d = dx + dy.

6. DISTRIBUTION-BASED CHANGE DETECTION

Another way to think about anomalous change detection is as a binary detection problem.8 Write P (x,y) is the
joint distribution of pixel values (x,y) in the two images. Write Pa(x,y) as a “model” for anomalous pixels.
It may seem counter-intuitive to write such an explicit model for something that is known to defy definition.
Anomalies, after all, are the ultimate je ne sais quoi: we say that they are irregular or uncommon or atypical,
but we become more equivocal when we try to say positively what they are. As long as Pa(x,y) is a broad
and diffuse distribution, however, then the anomalies that it “defines” will maintain their open-ended character.
The advantage of specifying Pa(x,y) explicitly is that it leads to a likelihood ratio P (x,y)/Pa(x,y) which is the
unambiguously optimal solution to the anomaly detection problem. Turning this around: any detector which can
be expressed as a ratio P (x,y)/Pa(x,y) can be interpreted as the optimal detector of anomalies whose nature
is specified by Pa(x,y).

In particular, if we can express a quadratic anomalous change detection algorithm as Q = Z−1−W−1 where
Z is defined in Eq. (5) and W−1 is positive semi-definite, then we can treat W as a covariance matrix that
describes the “background distribution” Pa(x,y) for anomalies. For RX, W−1 = 0 which corresponds to a
uniform background (i.e., a Gaussian with infinite variance in all directions). For chronochrome, this difference
is expressed in Eq. (29) and Eq. (32). For TLSQ (and, equivalently (in whitened coordinates), MAD and CE),
W−1 = Ud−k(UT

d−kZUT
d−k)−1UT

d−k, where Ud−k corresponds to the d− k largest eigenvectors of Z.

7. CONCLUSIONS

Inspired by the chronochrome, an anomalous change detector based on ordinary least squares, we employ total
least squares (TLSQ) to derive a new ACD algorithm. We find that the TLSQ-based anomalous change detector
is equivalent to SSRX applied to the stacked image space. Unlike the chronochrome, however, TLSQ is not
invariant to coordinate changes in x and y. To deal with this lack of invariance, we introduced whitened TLSQ,
which is TLSQ applied to data in which the two images have been individually whitened.
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In the whitened TLSQ algorithm, there is a user-chosen parameter k which corresponds to the rank of the
quadratic coefficient matrix. For appropriately chosen values of k, whitened TLSQ is equivalent to two known
ACD algorithms: multivariate alteration detection and optimized covariance equalization. The whitened TLSQ
algorithm however exhibits more flexibility because the parameter k can range from 1 to d, the sum of the number
of spectral channels in the x and y images. The case k = d turns out to be equivalent to the RX detector applied
to the stacked image space.

All of these algorithms are derived from a general subtraction-based change detection framework. But we
provide an alternative interpretation in terms of a distribution-based framework.
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APPENDIX A. NOTATION AND LIST OF VARIABLES

In general, lower case italic font variables (e.g., ‘x’) refer to scalars, lower case boldface (e.g., ‘x’) to vectors,
and upper case italic (e.g., ‘X’) to matrices. The transpose of a matrix is indicated with a superscript T (e.g.,
‘XT ’), and the matrix inverse (or pseudoinverse when the inverse doesn’t exist) is indicated with a superscript
−1 (e.g., ‘X−1’). Since transpose of the inverse equals inverse of the transpose, we can use −T to represent
that case (e.g., ‘X−T ’). We have tried to explain each new variable in the text as it is introduced, but Table 1
summarizes the most commonly used variables. In some cases, ad hoc variables are introduced which may have
different interpretations in different contexts.

Table 1. List of some commonly used variables

x (resp. y) scalar value of a pixel in the x-image (resp. y-image)
x (resp. y) vector value of a multispectral pixel in the x-image (resp. y-image)
z vector value of a pixel in the “stacked” image, defined in Eq. (4)
dx (resp. dy) dimension of x-image (resp. y-image)
d = dx + dy dimension of stacked image
Dx (resp. Dy, Dz) matrix of all the pixels in the x-image (resp. y-image, stacked image)
Bx (resp. By) transformation applied to x (resp. y)
x′ = BT

x x (resp. y′ = BT
y x) transformed vector value of a pixel in the x-image (resp. y-image)

B transformation applied to stacked image z
e = y′ − x′ = Bz vector-valued difference between transformed x-image and y-image
A scalar-valued anomalousness, usually a function of pixel value
X (resp. Y , Z) covariance matrix of x-image (resp. y-image, stacked image)
C cross-covariance of x-image and y-image, of size dy × dx)
x̃ (resp. ỹ, z̃) x (resp. y, z) in whitened coordinates
X̃ (resp. Ỹ , C̃, Z̃) matrix X (resp. Y , C, Z) in whitened coordinates
x̂ (resp. ŷ, ẑ) approximation to x (resp. y, z)
G (resp. Gx, Gy) invertible square matrix
Gw invertible square matrix used as whitening transform, see Eq. (55).
R (resp. S) possibly non-square matrix satisfying RT R = I (resp. ST S = I)
L (resp. L′) linear map, of size dy × dx (resp. dx × dy), used in chronochrome
K rank-k matrix that defines TLSQ, defined in Eq. (38)
D

(m)
z best rank-m approximation to data Dz

Q matrix of coefficients for quadratic anomalousness: A(z) = zT Qz
Q̃ (resp. Q′) coefficient matrix Q in whitened (resp. transformed) coordinates
U , V matrix of eigenvectors, often obtained from singular value decomposition
Uk (resp. Vk) submatrix of eigenvector matrix U (resp. V ) with k columns corresponding

to the k largest eigenvalues (or singular values, depending on context)
Σ diagonal matrix of singular values of data Dz

Σm best rank-m approximation to Σ; agrees with Σ for its m largest values
∆m = Σ−1Σm diagonal matrix with m ones and the rest zeros
Pm projection matrix that maps Dz into D

(m)
z (equivalently, z into ẑ)

B̆k matrix used for expressing WTLSQ in original (unwhitened) coordinates
Bkx (resp. Bky, Bk) first k columns of Bx (resp. By, B)
J diagonal matrix of singular values of C̃

jn nth singular value of C̃ (ı.e., nth element of J)
bn (resp. un, vn) vector obtained from the nth column of B (resp. U , V )
P (x,y) joint probability distribution for the pixel values x and y
Pa(x,y) distribution for anomalous values x and y
W−1 = Q− Z−1 inverse covariance matrix of “background distribution”
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